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A simple, efficient, and practical approach for detecting cloud and shadow areas in satel-
lite imagery and restoring them with clean pixel values has been developed. Cloud and
shadow areas are detected using spectral information from the blue, shortwave infrared,
and thermal infrared bands of Landsat Thematic Mapper or Enhanced Thematic Mapper
Plus imagery from two dates (a target image and a reference image). These detected
cloud and shadow areas are further refined using an integration process and a false
shadow removal process according to the geometric relationship between cloud and
shadow. Cloud and shadow filling is based on the concept of the Spectral Similarity
Group (SSG), which uses the reference image to find similar alternative pixels in the
target image to serve as replacement values for restored areas. Pixels are considered
to belong to one SSG if the pixel values from Landsat bands 3, 4, and 5 in the refer-
ence image are within the same spectral ranges. This new approach was applied to five
Landsat path/rows across different landscapes and seasons with various types of cloud
patterns. Results show that almost all of the clouds were captured with minimal com-
mission errors, and shadows were detected reasonably well. Among five test scenes, the
lowest producer’s accuracy of cloud detection was 93.9% and the lowest user’s accu-
racy was 89%. The overall cloud and shadow detection accuracy ranged from 83.6%
to 99.3%. The pixel-filling approach resulted in a new cloud-free image that appears
seamless and spatially continuous despite differences in phenology between the target
and reference images. Our methods offer a straightforward and robust approach for
preparing images for the new 2011 National Land Cover Database production.

1. Introduction

Landsat is one of the most widely used satellite data sources for local, regional, and global
applications because of its medium spatial resolution, multispectral bands, and long record
of historical data (Vogelmann et al. 2001; Homer et al. 2004; Goward et al. 2006; Williams,
Goward, and Arvidson 2006). With its no-cost policy, application of Landsat data will fur-
ther increase (Woodcock et al. 2008). However, clouds and cloud shadows often impede
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many applications such as land-cover classification and change detection because of the
spectral variance they introduce (Ju and Roy 2008). In the USA, one primary use of
Landsat data has been the production of the National Land Cover Database (NLCD), with
circa 1992, 2001, 2006, and soon 2011 epochs produced under the auspices of the Multi-
Resolution Land Characteristics (MRLC) Consortium (http://www.mrlc.gov). The MRLC
data pool now includes over 16,000 cloud-free or nearly cloud-free Landsat 5 and Landsat
7 images, which have been consistently preprocessed and are freely available for download
to the public. Historically, MRLC has included few cloudy scenes; the clouds and shadows
in these scenes were removed through hand digitizing. However, the new 2011 NLCD is
designed to use multi-temporal and multi-date Landsat imagery for change detection and
land-cover classification; therefore, an automated and widely applicable cloud and shadow
detection and removal method is needed to increase the number of Landsat images available
for such applications.

Few methods of cloud detection are operational at a regional scale or beyond. The auto-
mated cloud-cover assessment (ACCA) algorithm has been operationally used primarily to
estimate Landsat cloud-cover percentage for guiding scene selection and optimizing scene
acquisition (Irish 2000; Irish et al. 2006). The ACCA is composed of 26 specific deci-
sions, or filters, which make full use of spectral information from band 2 to band 6 and
their derivative indices. ‘ACCA clouds’ are defined as optically thick or nearly opaque.
Roy et al. (2010) developed cloud masks for web-enabled Landsat data (Landsat Enhanced
Thematic Mapper Plus (ETM+) composited mosaics of the conterminous USA) using a
classification tree in addition to ACCA. They developed statistical classification rules using
the optical and thermal wavelength values from training pixels. Both ACCA and classifi-
cation tree methods fully explored the capability of spectral values, but not the temporal
information to achieve their goals in developing cloud masks. The Multi-Temporal Cloud
Detection (MTCD) method has been developed in the framework of the preparation of
VENµS and SENTINEL-2 Level 2 processors (Hagolle et al. 2010). The MTCD method
detects sudden increases of reflectance in the blue wavelength on a pixel-by-pixel basis
using multi-temporal observations and tests the linear correlation of pixel neighbourhoods
taken from pairs of images acquired successively. Hagolle et al. (2010) concluded that the
MTCD method provides a better discrimination of clouded and unclouded pixels than the
ACCA methods. However, the MTCD method requires high revisit frequency satellite data
and chronological processing of the data. One common limitation of these methods is that
shadows from clouds are not assessed.

Many other methods have been developed for both cloud and shadow detection at local
and/or regional scales. Ho and Cai (1996) used supervised classification to map cloud
and shadow areas, then eliminated false clouds and shadows using geometric constraints
between clouds and their shadows. They summarized that it is normal that many ground
objects may also fall into cloud and shadow classes through supervised and/or unsuper-
vised classification. They further observed that geometric constraints were very effective
in eliminating false cloud and shadow pairs. Wang et al. (1999) detected clouds using the
brightness of the target image and brightness difference between the target image and a
reference image. They detected shadows by means of a wavelet transform because shad-
ows smooth the brightness changes of the ground. A reference image with no overlapping
clouds and shadows with the target image was selected. Martinuzzi, Gould, and Ramos
González (2007) created cloud masks using Landsat ETM+ band 1 (blue) and thermal
band 6. They then created a potential shadow mask by displacement of the cloud mask
based on the horizontal shift with a 10-pixel buffer added. Within the shadow mask, the
brightness values in band 4 were further used to differentiate cloud–shadow areas from
nonshadowed areas. Choi and Bindschadler (2004) designed an algorithm to detect clouds
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on ice sheets using the normalized difference snow index (NDSI) and a shadow matching
technique according to the knowledge of the solar illumination azimuth. NDSI is the nor-
malized difference between band 2 (green) and band 5 (mid-infrared (MIR)). The matching
procedure works with the sets of edges of possible clouds, the possible cloud shadows, and
the water regions. Hégarat-Mascle and André (2009) inter-calibrated bands 2 and 5 to detect
clouds and MIR to detect shadows. Relationships between clouds and their corresponding
shadows, in particular their similar shape, area, and relative locations, were formalized
using Markov random fields. The relationship was then used for cloud and shadow mutual
validation. Huang et al. (2010) developed an algorithm that used clear view forest pixels as a
reference to define cloud boundaries in a spectral-temperature space. Furthermore, shadow
locations were predicted according to cloud height estimates and sun illumination geom-
etry, and actual shadow pixels were identified by searching the darkest pixels surrounding
the predicted shadow locations. Their algorithm was particularly designed for forest change
analysis using Landsat images.

Besides cloud and shadow automatic detection, various techniques, which we grouped
into four general categories, have been used to fill gaps caused by cloud and shadow or in
scan line corrector (SLC)-off images.

(1) Compositing. This method replaced contaminated pixels with cloud-free pixels
from a reference image (Martinuzzi, Gould, and Ramos González 2007; Roy et al.
2010). Roy (2000) summarized effective compositing criteria, which include the
maximum normalized difference vegetation index (NDVI), maximum brightness
temperature, maximum apparent surface temperature, maximum difference in red
and near-infrared (NIR) reflectance, minimum scan angle, and combinations of
these. Because the compositing method depends solely on the reference image, the
quality of the filled value will be heavily affected by any difference between the ref-
erence and target images, which can be caused by many things such as phenology,
preprocessing, atmospheric condition, and disturbance.

(2) Regression. This method uses the regression relationship and/or histogram match-
ing between the target image and a reference image to generate a cloud-free image
(Helmer and Ruefenacht 2005). Earth Satellite Corporation has developed software
and a method that uses classification and regression tree technology to eliminate
cloud and shadow areas (Herold, Cunningham, and Wylie 2003). The regression
method tends to have difficulties with heterogeneous landscapes and linear features
because of the detail loss that occurs with regression tree prediction.

(3) Data fusion. Wang et al. (1999) adopted wavelet transformation to incor-
porate complementary information into the composite from multi-temporal
images. Roy et al. (2008) developed a semi-physical fusion approach that
used the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional
Reflectance Distribution Function (BRDF)/Albedo land surface characterization
product and Landsat ETM+ data to predict ETM+ reflectance on the same date.
This method is applicable, provided that the wavelenghts considered are similar to
those available from MODIS. The authors mentioned that it is not trivial to do data
co-registration and computation of Landsat satellite viewing and solar geometry.

(4) Neighbourhood pixel interpolation. This approach uses cloud-free pixels from the
image itself to predict the values for contaminated areas. Approaches can vary and
include using focal mean, nearest neighbour (Chen et al. 2011), or geostatistics
methods (Zhang, Li, and Travis 2007) to fill gaps. This method can be computation-
ally intensive and will predict poorly at the centre of large cloud/shadow patches
because of its reliance on neighbourhood pixels.
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The above cloud and shadow detection methods used brightness, temperature, temporal
information, geometric relationships between cloud and shadow, or some combination of
these kinds of information. However, little research has been done to develop a comprehen-
sive and widely applicable module flexibly integrating different strategies to produce cloud
and shadow masks. Each of the above gap-filling methods has its own set of strengths
and weaknesses. Some of these methods are heavily dependent on the reference image,
whereas others do not depend on the reference image at all. Some methods are computa-
tionally intensive. Some methods have difficulties with heterogenous landscapes and linear
features.

In this study, we propose a simple and practical method that produces cloud and shadow
masks by flexibly using spectral (blue, NIR, MIR, and thermal bands), temporal informa-
tion from two-date imagery, and spatial relationship (size, distance, and direction) between
cloud and corresponding shadow. We also propose an efficient, practical, and balanced
method, which uses information from two-date images for filling cloud- and shadow-
masked areas. The image for which we intend to detect clouds and shadows is referred
to as the target image, and the image that is used for assistance in detecting and filling is
referred to as the reference image.

2. Methodology

2.1. Data sets

We selected five Landsat path/rows (Table 1, Figure 1) representing different landscapes,
seasons, and cloud patterns to demonstrate the effectiveness of our methods. We used two
images per path/row: one target scene and one reference scene. The reference images
should have no overlapping clouds with the target images. There is no requirement for
a close match in phenology and image acquisition time between the target and reference
scenes, even though it is preferable to select the two scenes acquired from the same season
and within a short temporal gap if they are available. Landsat scene p43r32 (Figure 1(a))
covers the Black Rock Desert and Sierra Nevada terrain across Nevada and California. The
main land-cover types are shrub, barren land, and forest. Clouds are mainly located on the
upper part of the scene, including the desert. Landsat scene p42r28 (Figure 1(b)) is mainly
composed of forests and agricultural lands. Clouds in the target scene are on the forest
areas at the upper right corner of the scene. Landsat scene p33r33 (Figure 1(c)) is mainly
composed of agriculture, forest lands, and urban land covers. Clouds are on the agricultural
lands at the lower right corner of the target scene and cloud sizes vary from a few pixels

Table 1. Landsat data sets for cloud and shadow detection and filling.

Path/row Target image Reference image Main land cover

p43r32 20 June 2010 (lt5) 11 July 2006 (lt5) Shrub, barren land,
evergreen forest

p42r28 11 September 1999 (le7) 28 August 2000 (le7) Evergreen forest, cultivated
crops, grassland

p33r33 16 October 2000 (le7) 14 September 2000 (le7) Grassland, evergreen forest,
Developed

p18r34 5 March 2000 (lt5) 30 April 2000 (le7) Deciduous forest, pasture
hay, barren land

p12r30 16 June 2006 (lt5) 29 April 2006 (lt5) Evergreen forest,
deciduous forest, water

Note: lt5, Landsat 5; le7, Landsat 7.
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(a)

(b)

(c)

(d)

(e)

Figure 1. Target (left) and reference (right) images (displayed as bands 4, 3, and 2) for five Landsat
path/rows: (a) p43r32, (b) p42r28, (c) p33r33, (d) p18r34, and (e) p12r30.
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to hundreds of thousands of pixels. Landsat scene p18r34 (Figure 1(d)) covers mountain-
ous terrain across Virginia, West Virginia, and Kentucky. Mining has been active there for
centuries. Clouds are distributed widely in the target scene and some clouds are thin but
nearly opaque. Landsat scene p12r30 (Figure 1(e)) is in a relatively flat area and mainly
composed of forests and water. Clouds vary in size and type. Both p18r34 (Figure 1(d))
and p12r30 (Figure 1(e)) have very different phenology between their target and reference
images.

All of the images were preprocessed following the MRLC 2001 protocol (Chander
et al. 2009). Image pairs were geometrically corrected and converted to top-of-atmosphere
reflectance, and their thermal bands were converted to at-sensor brightness temperature.
The top-of-atmosphere reflectance values for all six reflective bands (bands 1–5 and 7) are
multiplied by 400 to produce 8-bit data. The at-sensor brightness temperature is also
rescaled by subtracting 240, then multiplying by 3 to produce 8-bit data. These images
are all in rescaled 8-bit format and resampled to have a spatial resolution of 30 m.

2.2. Cloud and shadow detection

The cloud and shadow detection model consists of three major functional parts (Figure 2).
The first part produces two (relaxed and restricted) cloud and shadow masks. The second
part integrates both relaxed and restricted masks to use compensating features from both
masks. The third part employs the geometric relationship between cloud and shadow (dis-
tance, size, and direction) to remove false shadows on the integrated cloud and shadow
masks to produce a final constrained cloud and shadow mask for the target image.

2.2.1. Initial relaxed and restricted cloud and shadow masks

We incorporate Landsat blue and thermal bands from two-date images as the primary candi-
dates to detect clouds. The first assumption is that clouds are normally brighter, especially

Target and reference images

Relaxed cloud and shadow mask Relaxed cloud and shadow mask

Detection: using b1, b4, and b7, and b6 for cloud

detection and using b5 and b6 for shadow detection
Detection: using b1, b4, and b7 for cloud

detection and using b5 for shadow detection

Integration: relaxed mask as zone and restricted mask as class

False shadow removal: using three geometric constraints for removal

Integrated cloud and shadow mask

Final constrained cloud and shadow mask

Figure 2. Flow chart of cloud and shadow mask development.
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in the blue band, and are usually colder than the land surface they obscure (Bréon and
Colzy 1999; Irish 2000). The second assumption is that the other bright land surfaces are
relatively stable compared to the quick variations of the reflectance of pixels affected by
clouds (Hagolle et al. 2010). The relaxed cloud class is detected using the blue band of
the target image and the blue-band difference image derived from the target and refer-
ence images. In addition, band 4 (NIR) and band 7 (shortwave infrared (SWIR)) of the
target image are used to assist in removing some commission errors by eliminating pixels
with relatively low spectral values in bands 4 and 7. Thermal bands from target and refer-
ence images are used to further refine the relaxed cloud class to produce a restricted cloud
class.

Shadows are detected using band 5 (MIR) and the thermal bands from the two-date
images in a similar way to clouds. The basic assumption is that shadows are normally
darker and colder than the land surface they obscure (Irish 2000; Hégarat-Mascle and André
2009). The relaxed shadow class is derived only from two MIR bands of the target and
reference images. The restricted shadow class is obtained after integrating information from
the thermal bands as well as the MIR bands. The particular condition statements for the
cloud and shadow detection are shown in Figure 3. Threshold values are relative measures
of spectral deviation from the mean value of a particular layer. Final outputs from the first
functional part of the model include one relaxed cloud and shadow mask and one restricted
cloud and shadow mask.

2.2.2. Cloud and shadow mask integration

The second functional part of the model integrates the two cloud and shadow masks
(relaxed and restricted) into one mask (Figure 2). In some cases, neither cloud nor shadow
mask form the first model is satisfactory, i.e. the variability of the land surface and the
wide reflectance and temperature profiles of the clouds cause too many clouds and shad-
ows (large commission errors) in the relaxed mask and too few clouds and shadows (large
omission errors) in the restricted mask. The process of integration is conceptually similar to
a multi-scale object-oriented classification. The integration idea views each patch of cloud
or shadow in the relaxed mask as a zone or an object and in the restricted cloud and shadow
mask as a class. If a minimum of five cloud or shadow pixels from the restricted mask in a

Target and

reference

images

Cloud and shadow masks

(relaxed and restricted)

Shadow classes

(relaxed and restricted)

Cloud classes

(relaxed and restricted)

B5
target

 (i, j) < mean–0.5*std &

B5
target

 (i, j) – B5
ref
 (i, j) < mean – 1.0*std &

B4
target

 (i, j) < mean

B6
target

 (i, j) < mean + 0.25*std &

B6
target

 (i, j) – B6
ref 

(i, j) < mean – 0.0*std

B6
target

 (i, j) – B6
ref 

(i, j) < mean – 1.0*std

B6
target

 (i, j) < mean–0.5*std &

B4
target

 (i, j) > mean & B7
target 

(i, j) > mean

B1
target

 (i, j) – B1
ref 

(i, j) > mean + 1.0*std &

B1
target

 (i, j) > mean + 1.0*std &

Figure 3. Relaxed and restricted cloud and shadow mask model conditions. B1target (i, j) means
band 1 pixel value of the location (i, j) in the target image. B1ref (i, j) means band 1 pixel value of the
location (i, j) in the reference image. B4target (i, j) means band 4 pixel value of the location (i, j) in the
target image.
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zone or object exists, the entire zone or object (at least 10-pixel size) from the relaxed mask
will be classified as cloud or shadow in the integrated mask; otherwise, the entire zone or
object will disappear in the integrated mask.

2.2.3. False shadow removal

The third part of the model is designed to conservatively remove false shadows using three
geometric constraints (Figure 2). The particular conditions of removing false shadows are
listed below.

(1) Closeness. A cloud and its shadow should not be far apart (Ho and Cai 1996). If no
pixel of a shadow patch within the 100-pixel buffer zone of the cloud exists, the
shadow patch is removed. We observed that the shortest distance between a cloud
and its shadow is rarely beyond 100 pixels across the USA and acquisition seasons.
The 100-pixel distance is the closest distance between a cloud and shadow patch,
not the distance between a cloud pixel and its corresponding shadow.

(2) Size. Shadow size should not be much bigger than its cloud (Ho and Cai 1996).
However, a shadow patch may sometimes connect to areas that look like shadows,
but are not actually shadows. Therefore, we conservatively remove any shadow
whose size is equal to or larger than twice the corresponding cloud patch size.

(3) Direction. Clouds and their shadows are related by their relative locations depend-
ing on the image acquisition time and the sun location (Hégarat-Mascle and André
2009). In the USA, all of the shadows are located northwest of the clouds because
of the morning acquisition time. Therefore, we removed all shadows not located in
that northwest direction.

2.3. Cloud and shadow filling

Pixels having the same spectral values are likely to be of the same land-cover type, and
those pixels will likely have similar spectral values on a different date if no significant
environmental and land-cover changes have taken place (Chen et al. 2011). Pixels with
similar spectral values are referred to as a spectral similarity group (SSG). Our method for
filling clouds and shadows is based on the concept of SSG. Landsat bands 3, 4, and 5 of
the reference image are used to define a specific SSG for each contaminated pixel from the
cloud and shadow mask of the target image. Pixels belong to a specific SSG when values
from Landsat bands 3, 4, and 5 are within ±1 deviation of the same band values.

We followed three steps (Figure 4) to fill a single cloud or shadow pixel. (1) The corre-
sponding pixel in the reference image was identified for a cloud or shadow pixel within the
target image, and the bands 3, 4, and 5 values of the pixel (referred as b3c, b4c, and b5c)
were compared with every other pixel in the reference image. All other pixels form an SSG
for the contaminated pixel if they have bands 3, 4, and 5 values within the ranges b3c ±
1, b4c ± 1, and b5c ± 1, respectively. (2) The locations of SSG pixels from the reference
image are transferred to the target image, and the mean values of those pixels from the
target image are calculated. (3) The mean values are used to replace the contaminated pixel
values for the cloud or shadow pixel. The process is repeated for each pixel from the cloud
and shadow mask. Because cloud size and location varies, the entire reference image is
searched for SSG. After the process, very few isolated pixels are left unfilled, and the local
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2

1

3

(b)(a)

Figure 4. Cloud-filling diagram: (a) simulated target image; (b) simulated reference image of the
same area. The red and dashed cell is a contaminated pixel, and the green and dashed cell is the
corresponding cell on the reference image.

Notes: Green cells belong to one SSG identified using the reference image and are cloud free. Blue
cells are the location-projected pixels from green cells and are also cloud free. Mean values from the
blue cells are used to replace the values of the red cell.

mean method is applied to those pixels to complete the filled image. All of these processes
are integrated in one single model.

Before filling, we buffered five pixels around the clouds and shadows on the constrained
mask because the cloud and shadow mask is not perfect at a single pixel level, especially
regarding the cloud edges.

2.4. Accuracy assessment

An accuracy assessment was conducted using a procedure based on a statistical sampling
design. Specifically, a stratified random sampling procedure was applied, in which three
strata (classes) were formed, with each containing cloud, shadow, and cloud-free pixels.
A number of random points was drawn from each stratum for assessing the accuracy of the
method.

For three Landsat images (p43r32, p42r28, and p33r33), we stratified and randomly cre-
ated 300 points with a minimum of 50 points for each class on the final cloud and shadow
mask, i.e. the constrained mask. For p18r34 and p12r30, we increased the total points to
500 and the minimum points to 100 because these scenes had clouds and shadows widely
distributed throughout the image. Visual inspection of the Landsat images and historical
aerial images from Google Earth were used to collect reference data for each selected sam-
pling pixel, and a reference label was assigned to one of the three strata/classes (cloud,
shadow, and cloud-free pixels).

The outcome of the sampling and interpretation process was a complete reference data
set, which was used to assess the accuracy of each of the four output files obtained from the
cloud and cloud shadow detection algorithms. The four output files of cloud and shadow
masks are: constrained, integrated, relaxed, and restricted, as defined in Section 2.2. For
each output file, an overall producer’s and user’s accuracy was computed for the three
strata/classes (cloud, shadow, and cloud-free pixels).

3. Results

3.1. Cloud and shadow masks

Figure 5 illustrates the process of cloud and shadow detection by showing some interme-
diate and final results from Landsat scene p42r28. Figures 5(a) and (b) show relaxed and
restricted cloud and shadow masks. The relaxed mask (Figure 5(a)) has a large number
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(a)

(c)

(b)

(d)

Figure 5. Cloud (displayed as red) and shadow (displayed as yellow) masks of p42r48: (a) relaxed
mask; (b) restricted mask; (c) integrated mask; (d) constrained final mask.

of cloud commission errors from agricultural lands in the upper left of the scene. The
restricted mask (Figure 5(b)) seems to have no cloud commission errors because extra
information from thermal bands helped remove many false clouds. Both masks have a large
number of shadow commission errors due to the forest pixels that are in terrain shadow and
prevalent in the scene. Figure 5(c) shows the integrated cloud and shadow mask from the
relaxed and restricted masks. The cloud patches in the integrated mask look similar to the
clouds in the restricted mask, yet with the full shape of real cloud patches (upper right area)
as in the relaxed mask. Figure 5(d) shows the final constrained cloud and shadow mask
after geometric constraints were applied to the integrated mask. The constrained cloud and
shadow mask (Figure 5(d) is apparently much cleaner than the integrated mask (Figure 5(c))
because many false shadow patches were removed.

Table 2 summarizes the histogram of cloud and shadow masks for all five test scenes.
As expected, the restricted cloud and shadow masks have less cloud and shadow than the
relaxed masks. In most cases, the pixel numbers of each class in the integrated mask
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are between the relaxed and restricted masks. Owing to a cleaning process (i.e. elimi-
nating cloud and shadow patches with sizes less than 5 pixels in the restricted mask and
10 pixels in the relaxed mask) embedded in the integration procedure, an integrated mask
may have fewer cloud or shadow pixels than the restricted mask. The restricted mask of
p43r32 has 88.8% of the cloud or shadow pixels in the restricted mask. The restricted mask
of p43r32 has 88.8% of the cloud pixels and 83.7% of the shadow pixels in the relaxed
mask, whereas the integrated mask has 97.3% of the cloud pixels and 94.2% of the shadow
pixels in the relaxed mask. The thermal band does not have a larger impact on the cloud
and shadow detection for p43r32. The restricted mask of p42r28 has only 9.9% of the
cloud pixels and 69.8% of the shadow pixels in the relaxed mask, and the integrated mask
has a similar number of cloud pixels, but about half the number of shadow pixels in the
restricted mask. The restricted mask of p18r34 has 6.2% of the cloud pixels and 80.7% of
the shadow pixels, and the integrated mask has 20.1% of the cloud pixels and 7.0% of the
shadow pixels in the relaxed mask. Integration was very effective for p42r28 and p18r34 in
removing many of the false clouds (some agricultural lands in p42r28 and some mining
areas in p18r34) in the relaxed masks, while keeping the full shape of real clouds compared
to the restricted masks. The effect of integration was less noticeable on cloud classes in
p33r33 and p12r30 because the cloud classes in their relaxed mask have low commission
errors; therefore, the integration masks have cloud pixel numbers very close to the relaxed
masks. In general, the integration process is less effective in reducing false shadows than in
reducing false clouds because the thermal band has less effect on separating false shadows
from real shadows than separating false clouds from real clouds.

The constrained cloud and shadow masks reduced false shadow patches dramatically
after three geometric constraints were applied to the integrated masks, except for p12r30
(Table 2). The constrained mask of p42r28 has 7.0% of the shadow pixels in the relaxed
mask, and the constrained mask of p18r34 has only 1.0% of the shadow pixels in the relaxed
mask. The scene of p12r30 does not have much shadow commission error in the first place
because the topography is relatively flat and the landscape is mainly composed of forest
and water. Figure 6 shows the final constrained cloud and shadow masks for the other
four path/rows besides p42r28. Five subset examples of the constrained cloud and shadow
mask are shown in Figures 7(c), 8(c), 9(c), 10(c), and 11(c). Clouds were detected very
well for four scenes (p42r28, p33r33, p18r34, and p12r28) without visually notable com-
mission and omission errors. Some cloud omission errors were observed at the cloud edges
and small patches in p43r32. Omission errors were observed in shadow detection mainly
because of confusion with terrain shadows in p42r28, small patch sizes in p33r33, and
the forest and water in p12r30. We have relatively high commission errors of shadow in
p18r34 because geometric constraints could not remove those errors due to the clustered
clouds. Even though some shadow pixels are missed, the majority of the shadow patches
are captured.

3.2. Accuracy assessment

To assess the detection accuracy quantitatively, random points, which were initially created
on the constrained cloud and shadow mask, were applied to other intermediate cloud and
shadow masks from the model. Table 3 shows the producer’s, user’s, and overall accuracy
of all the classes (cloud, shadow, and clear) from those masks. Integrated cloud and shadow
masks generally have the highest overall accuracy compared to relaxed and restricted
masks. The scene of p12r30 is an exception because even the relaxed cloud and shadow
mask has few commission errors with a user’s accuracy of 100% and 97.8% for cloud and
shadow, respectively. Additionally, the overall accuracies for the integrated (95.4%) and
relaxed (97.4%) masks are very close.
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(a)

(c)

(b)

(d)

Figure 6. The constrained cloud (displayed as red) and shadow (displayed as yellow) masks for the
other four Landsat path/rows: (a) p43r32; (b) p33r33; (c) p12r28; (d) p18r34.

The constrained cloud and shadow masks clearly have equal or higher overall accu-
racy than the integrated masks because the model of geometric constraints conservatively
removed large amounts of false shadow (Table 3). The lowest producer’s accuracy of cloud
from the constrained masks was 93.9%, which was in the scene of p43r32. Those omission
errors were mainly caused by cloud edges. The lowest user’s accuracy of cloud from the
constrained masks was 89.0%, which was in the scene of p18r34 where some mining areas
were mistakenly classified as clouds. The scene of p18r34 also has the worst user’s accu-
racy of 33.7% for shadow because of the mountain terrain; however, it still has a producer’s
accuracy of 97.1% for shadow.

3.3. Cloud-filling effects

Figures 7(d), 8(d), 9(d), 10(d), and 11(d) show the images after the cloud and shadow
filling. Visually, no stripes or spatial shifts or boundaries on any filled image exist. Some
dark areas still exist in the filled image of p42r28 (Figure 7(d)) because of the omission
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(a)

(c)

(b)

(d)

Figure 7. Landsat scene p42r28: (a) target image (11 September 1999); (b) reference image
(28 August 2000); (c) cloud (displayed as red) and shadow (displayed as yellow) mask on the tar-
get image; (d) cloud-filled image (black areas within the blue polygon are shadows that were not
captured by cloud and shadow detection).

errors in shadow detection from the buffered cloud and shadow mask. The areas filled
according to the algorithm blended in with the rest of the areas well, and one cannot discern
where the original clouds and shadows were located without looking at the target image.
Despite the different phenology shown in between the target image and the reference image,
the filled image of p18r34 (Figure 9(d)) still appears seamless; this is because we filled the
image using the pixels from the target image itself and only used the reference image for
identifying the locations of those similar pixels. The spatial and spectral integrity of linear
features in the filled images, such as roads and rivers, is maintained as well.

4. Discussion

Integrated cloud and shadow masks generally have the highest overall accuracy compared
to relaxed and restricted masks, indicating that the integration process can intelligently
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(a)

(c)

(b)

(d)

Figure 8. Landsat scene p33r33: (a) target image (16 October 2000); (b) reference image
(14 September 2000); (c) cloud (displayed as red) and shadow (displayed as yellow) mask on the
target image; (d) cloud-filled image.

combine the advantages from both relaxed and restricted cloud and shadow masks.
Integrated cloud and shadow masks basically keep the full shape of real cloud and shadow
patches, while enabling the removal of false cloud and shadow patches. The process of
integration is conceptually similar to a multi-scale object classification. The integration
method is a useful way to integrate the spectral information from visible, infrared, and
thermal bands by combining relaxed and restricted masks. The integration mask may lose
some small patches of cloud and shadow compared to the relaxed mask when the restricted
mask does not detect any cloud or shadow pixel in those small patches.

The final cloud and shadow masks (i.e. the constrained masks) were shown to have high
accuracies, especially for cloud. The lowest producer’s accuracy of cloud is 93.9% and the
lowest user’s accuracy is 89.0% among the five test scenes. The low cloud omission error
from our model is likely due to the sensitivity of the blue bands, and the low to moderate
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(a)

(c)

(b)

(d)

Figure 9. Landsat scene p18r34: (a) target image (5 March 2000); (b) reference image (30 April
2000); (c) cloud (displayed as red) and shadow (displayed as yellow) mask on the target image; (d)
cloud-filled image.

commission error can be attributed to the flexible use of the thermal and temporal informa-
tion from two-date Landsat images. Shadows are difficult to map, and geometric constraints
are shown to help reduce the false shadow pixels tremendously. Shadow pixel numbers in
the constrained masks cover a range from 1.0% to 86.3% of the relaxed masks. The worst
scene, p18r34, had a producer’s accuracy of 97.1% and a user’s accuracy of 33.7% because
some false shadows trapped in cloud clusters could not be removed according to the three
geometric constraints we applied. Individual users can adjust the threshold values in the
first step of detecting cloud and shadow and some parameters in the last step of removing
the false shadows to achieve better results for their scenes.

All five filled images are visually seamless regardless of their phenology differences for
the target and reference images and the cloud and shadow patch size. The linear features
on those filled images retain their spatial and spectral continuity. Our new method is also
easy to implement and less time-consuming. We searched the SSG using the entire scene
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(a)

(c)

(b)

(d)

Figure 10. Landsat scene p12r30: (a) target image (16 June 2006); (b) reference image (29 April
2006); (c) cloud (displayed as red) and shadow (displayed as yellow) mask on the target image; (d)
cloud-filled image.

for simplicity and efficiency. However, if those pixels within one SSG do not change in
a systematic way between the target and reference image dates (i.e. SSG pixels from the
reference image do not belong to or deviate far from those of an SSG on the target image),
the model will not work well for some pixels. One improvement for future research is to
restrict the spatial distance as well as the spectral similarity.

5. Conclusion

As Landsat data became freely available, an increased desire to use more of the archive
for multiple terrestrial applications, including data sets with clouds, arose. The need to
automatically detect cloud and shadow and restore those areas with clean pixel values
has become compelling. Our method of cloud and shadow detection flexibly makes full
use of visible, SWIR, and thermal spectral information, as well as temporal information
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(a)

(c)

(b)

(d)

Figure 11. Landsat scene p43r32: (a) target image (20 June 2010); (b) reference image (11 July
2006); (c) cloud (displayed as red) and shadow (displayed as yellow) mask on the target image; (d)
cloud-filled image.

and geometric relationships between clouds and their shadows. The test results from this
study illustrate the wide applicability of the cloud and shadow detection for Landsat scenes
selected for the NLCD production. The model can reduce omission error effectively without
introducing large commission error. Besides the cloud and shadow detection method, we
introduced a new concept of SSG and the model developed based on the concept was shown
to be effective in replacing the contaminated area with reasonable values. Our methods do
not require that the reference image be acquired under similar illumination conditions and
phenology as the target image.
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Table 3. Accuracy of cloud and shadow masks for the five Landsat test scenes.

Accuracy (%)

Scene Version Class Producers Users Overall

p43r32 Constrained Cloud 93.9 93.9 95.3
Shadow 92.9 96.3
Clear 96.7 95.6

Integrated Cloud 93.9 93.9 95.3
Shadow 92.9 96.3
Clear 96.7 95.6

Relaxed Cloud 93.9 92.4 95.3
Shadow 94.6 96.4
Clear 96.1 96.1

Restricted Cloud 93.9 100.0 95.7
Shadow 87.5 96.1
Clear 98.9 94.2

p42r28 Constrained Cloud 100.0 100.0 99.3
Shadow 100.0 96.0
Clear 99.0 100.0

Integrated Cloud 100.0 100.0 99.0
Shadow 100.0 94.1
Clear 98.5 100.0

Relaxed Cloud 100.0 94.3 98.0
Shadow 100.0 94.1
Clear 97.0 100.0

Restricted Cloud 98.0 100.0 98.7
Shadow 100.0 94.1
Clear 98.5 99.5

p33r33 Constrained Cloud 100.0 100.0 96.3
Shadow 85.4 87.5
Clear 97.6 97.1

Integrated Cloud 100.0 100.0 96.0
Shadow 85.4 85.4
Clear 97.1 97.1

Relaxed Cloud 100.0 100.0 96.0
Shadow 97.6 78.4
Clear 94.7 99.5

Restricted Cloud 94.3 100.0 93.0
Shadow 65.9 87.1
Clear 98.1 92.2

p18r34 Constrained Cloud 97.8 89.0 83.6
Shadow 97.1 33.7
Clear 79.1 98.7

Integrated Cloud 97.8 89.0 75.6
Shadow 97.1 24.1
Clear 68.4 98.5

Relaxed Cloud 97.8 81.7 73.4
Shadow 97.1 23.8
Clear 65.4 98.4

Restricted Cloud 37.4 97.1 69.8
Shadow 85.7 25.6
Clear 76.4 81.9

p12r30 Constrained Cloud 98.2 100.0 95.4
Shadow 82.2 97.8
Clear 99.3 93.0

(Continued)
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Table 3. (Continued).

Accuracy (%)

Scene Version Class Producers Users Overall

Integrated Cloud 98.2 100.0 95.4
Shadow 82.2 97.8
Clear 99.3 93.0

Relaxed Cloud 98.2 100.0 97.4
Shadow 91.6 98.0
Clear 99.3 96.2

Restricted Cloud 90.1 100.0 85.2
Shadow 41.1 100.0
Clear 100.0 79.2

Both cloud and shadow detection and filling models were developed in ERDAS
IMAGINE (Leica Geosystems, Canton St. Gallen, Switzerland), and each model required
target and reference image inputs. As far as the limitations of the proposed method are con-
cerned, it requires the reference image to have no overlapping clouds with the target scene
and few land-cover changes between the filling image pair. In some cases, some confusion
between cloud shadows and water and terrain shadows may occur. Even with these limita-
tions, our approach, which is potentially appropriate for preparing images for the NLCD
production, is simple, practical, and efficient, and it provides reasonably good results.
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